Experimental Molecular Communication Testbed Based on Magnetic Nanoparticles in Duct Flow

نویسندگان

  • Harald Unterweger
  • Jens Kirchner
  • Wayan Wicke
  • Arman Ahmadzadeh
  • Doaa Ahmed
  • Vahid Jamali
  • Christoph Alexiou
  • Georg Fischer
  • Robert Schober
چکیده

Simple and easy to implement testbeds are needed to further advance molecular communication research. To this end, this paper presents an in-vessel molecular communication testbed using magnetic nanoparticles dispersed in an aqueous suspension as they are also used for drug targeting in biotechnology. The transmitter is realized by an electronic pump for injection via a Yconnector. A second pump provides a background flow for signal propagation. For signal reception, we employ a susceptometer, an electronic device including a coil, where the magnetic particles move through and generate an electrical signal. We present experimental results for the transmission of a binary sequence and the system response following a single injection. For this flowdriven particle transport, we propose a simple parameterized mathematical model for evaluating the system response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study on the Effect of Magnetic Field on Critical Heat Flux of Ferrofluid Flow Boiling in a Vertical Tube

In the present work, the critical heat flux measurements were performed for the subcooled flow boiling of pure water and magnetic nanofluids (i.e., water + 0.01 and 0.1 vol.% Fe‌‌3O4) in a vertical tube. The effect of applying an external magnetic field on the CHF variation was studied experimentally as well. The obtained results indicated that the subcooled flow boiling CHF in the vertical tub...

متن کامل

Synthesis and characterization of magnetic γ- Fe2O3 nanoparticles: Thermal cooling enhancement in a sinusoidal headbox

Nano-size maghemite (γ-Fe2O3) particles were prepared in one step using ultrasound radiation. The obtained nanoparticles were characterized by SEM, TEM , XRD, FTIR, and VSM. The results revealed that the synthesized nanoparticles were spherical, mono-dispersed and uniform. Furthermore, the crystalline structure of nanoparticles endorsed by X-ray diffraction study. The FTIR spectra have provided...

متن کامل

Effects of non-newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery

Objective(s): One applications of nanotechnology is in the area of medicine which is called nanomedicine. Primary instruments in nanomedicine can help us to detect diseases and used for drug delivery to inaccessible areas of human tissues. An important issue in simulating the motion of nanoparticles is modeling blood flow as a Newtonian or non-Newtonian fluid. Sometimes blood flow is simulated ...

متن کامل

Heat Transfer from a Tube Bank in Cross Flow in a Duct

An experimental investigation on heat transfer coefficient is presented from three horizontal tubes in a vertical array in a duct for 500<ReD<6000. A mass transfer measuring technique based on psychrometry chart is used to determine heat transfer coefficient. The diameter of the tubes is 11 mm each spaced 40 mm apart and in-line pitch ratio varies in the range 0.055<D/W<0.22. The experimenta...

متن کامل

New Achievements in Fe3O4 Nanofluid Fully Developed Forced Convection Heat Transfer under the Effect of a Magnetic Field: An Experimental Study

Fe3O4 nanofluid fully developed forced convection inside a copper tube is empirically investigated under the effect of a magnetic field. All of the investigations are performed under laminar flow regime (670≤Re≤1700) and thermal boundary conditions of the tube with uniform thermal flux. The tube is under the effect of a magnetic field in certain points. This research aims to study the effect of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018